Collaborative Team: Pre-Calculus

Unit \#: Chapter 1
Essential Standard: Fundamentals

What is the Learning Target or Essential Question?	What Level of Thinking Does it Involve? Depth of Knowledge (DOK 1-4)	How will you formatively assess this learning target or response to your essential question?
I can write between interval and inequality notation.	DOK 3	$(1,4]=1<\mathrm{x} \leq 4$
I can factor difference of squares.	DOK 3	$x^{2}-25$
I can factor trinomials.	DOK 3	$2 x^{2}-x-3$
I can write equations of circles in standard form.	DOK 3	$x^{2}+y^{2}+2 x-6 y-15=0$
I can identify the center and radius of a circle from the equation.	DOK 1	$(x+1)^{2}+(y-3)^{2}=25$

Unit \#: Chapter 2

Essential Standard: Functions

I can evaluate function notation.	DOK 2	$g(x)=2 x^{2}-5 x-3$ Find $g(-1)$
I can evaluate piecewise functions.	DOK 2	$f(x)=\left\{\begin{array}{cc}2 x-10 & 0 \leq x<50 \\ x+30 & 50 \leq x \leq 150\end{array}\right.$
Find $\mathrm{f}(83)$		

I can graph piecewise-defined functions.	DOK 2	Graph $\mathrm{f}(\mathrm{x})$
I can shift relations vertically and horizontally both algebraically and graphically.	DOK 3	$y=2 x^{2}$ Write the equation of the translation of y 2 units left and down 4 units
I can reflect relations both algebraically and graphically.	DOK 3	$y=2 x^{2}$ Write the equation of the translation of y reflected around the y -axis
I can perform nonrigid transformation both algebraically and graphically.	DOK 3	$y=2 x^{2}$ Write the equation of the translation of y stretched by a factor of 3 .
I can add, subtract, multiply and divide functions.	DOK 2	Given $f(x)=3 x+1$ and $g(x)=4 x-6$ Find the following: $(f+g)(x),(g-f)(x)$, $(f \cdot g)(-3)$ and $(g / f)(5)$
I can find the composition of one function with another function.	DOK 3	$\begin{gathered} f(x)=e^{x} \text { and } g(x)=2 x^{2}-5 x-3 \\ \text { Find } \mathrm{f}(\mathrm{~g}(1)) \end{gathered}$
I can find the inverse of functions algebraically.	DOK 2	$\begin{gathered} g(x)=2 x^{2}-5 x-3 \\ \text { Find } g^{-1}(x) \end{gathered}$

Unit \#: Chapter 3

Essential Standard: Polynomial and Rational Functions

Unit \#: Chapter 4

Essential Standard: Exponential and logarithmic functions

I can find exponential functions given a graph.		

Unit \#: Chapter 5

Essential Standard: The Unit Circle

I can find values of trigonometric functions.	DOK 2	Find the exact value of the other five trigonometric functions of θ if $\cos \theta=-3 / 5$ and θ is in Quadrant III
I can use the fundamental trigonometric identities.	DOK 3	Find the exact value of:
		DOK 3
I can graph transformations of the six trigonometric curves.	Identify the midline, amplitude, period, horizontal shift, and asymptotes, when appropriate of y $=4 \cos (3 x-\pi)$	

Unit \#: Chapter 6

Essential Standard: Right Triangle Trigonometry

I can convert between radians and degree measure.	DOK 2	Convert 210° to radians.
I can solve triangles using trigonometric ratios.	DOK 2	Solve the triangle. Round answers to the nearest tenth. $\mathrm{A}=25^{\circ}, \mathrm{b}=2, \mathrm{c}=5$
I can solve applications using right triangle trigonometry.	DOK 4	From a point on level ground 135 feet from the base of a tower, the angle of elevation of the top of the tower is 57.3°. Approximate the height of the tower rounded to the nearest foot.

I can apply the law of sines.	DOK 4	From a point on level ground 135 feet from the base of a tower, the angle of elevation of the top of the tower is 57.3°. Approximate the height of the tower rounded to the nearest foot.
I can apply the law of cosines.	DOK 4	The angle at one corner of a triangular plot of ground is 73.7° and the sides that meet at this corner are 175 feet and 150 feet long. Approximate the length of the third side rounded to the nearest foot.

Unit \#: Chapter 7

Essential Standard: Trigonometric Identities and Equations

I can establish trigonometric identities.	DOK 4	$\text { Verify }(\sin x+\cos x)^{2}=1+\sin (2 x)$
I can solve basic trigonometric equations. I can solve trigonometric equations involving identities. I can solve trigonometric equations involving identities. I can use sum and difference formulas to find exact values.	DOK 3	See Final Review \#31 For each equation, find the solutions: i. On the interval $[0,2 \pi)$ give exact answers. ii. On the interval $[0,2 \pi)$ give approximate answers rounded to 4 decimal places. iii. All real solutions in exact form. a. $2 \sin \theta-3 \sin \theta \cos \theta=0$ b. $\quad 2 \sin ^{2} x+\sin x-1=0$ c. $\sin (2 x)-\sin x-2 \cos x=-1$ d. $4 \tan x \sin x=-\sin x$

Unit \#: Chapter 8

Essential Standard: Polar Coordinates and Equations

I can plot points of polar coordinates.	DOK 2	Plot the point $\left(5, \frac{4 \pi}{3}\right)$
I can convert between polar and rectangular coordinates.	DOK 2	Convert the point $\left(5, \frac{4 \pi}{3}\right)$ to exact Cartesian coordinates.
I can graph polar equations.	DOK 2	Sketch $\mathrm{r}=4 \cos 2 \theta$

Unit \#: Chapter 12

Essential Standard: Sequences and Series

I can determine terms in a sequence. I can write sums using sigma notation. I can evaluate sums in sigma notation.	DOK 2	Complete the problems which involve sequences and sums. a. Give the first four terms of the sequence with terms given by $a_{n}=\frac{(-1)^{n}}{n^{2}+1}$ b. Write a formula for the nth term of the sequence with the first few terms given by: $1,3,5,7, \ldots$ c. Evaluate $\sum_{n=0}^{3} n(n+1)$
I can expand (a+b) ${ }^{\text {n }}$	DOK 3	expand (2x+3y $\left.{ }^{2}\right)^{4}$ and simplify completely.

